Что такое крутящий момент, и почему он важен?
2021-07-22 386 0- Простым языком о крутящем моменте
- Почему крутящий момент важен?
- Что такое крутящий момент двигателя
- Как рассчитать
- Мощность или крутящий момент — что важнее?
- Крутящий момент дизельного двигателя
- От чего зависит крутящий момент ДВС
- На что влияет крутящий момент двигателя
- Как зависит мощность от крутящего момента
- Какому двигателю отдать предпочтение
- Бензиновый двигатель
- Дизельный двигатель
- Улучшение разгона авто за счет изменения момента вращения
- Отличия бензиновых моторов от дизелей по моменту
- Что такое максимальный крутящий момент двигателя?
- Что интересует разных водителей
- Что такое рычаг силы?
- Направление действия величины M¯
- Физический смысл величины M¯
- Единицы измерения момента силы
- Используем векторы для изучения вращательного движения
- Определяем направление угловой скорости
- Определяем направление углового ускорения
- Поднимаем грузы: момент силы
- Знакомимся с формулой момента силы
- Разбираемся с направлением приложенной силы и плечом силы
- Размышляем над тем, как создается момент силы
- Определяем направление момента силы
- Мощность двигателя
- Подведем итоги
Простым языком о крутящем моменте
Если внимательно изучить основные характеристики двигателя авто, то можно столкнуться со следующими понятиями:
- уровень мощности мотора машины, который измеряется в лошадиных силах;
- крутящий момент мотора машины (измеряется в ньютонометрах);
- число оборотов, которые мотор машины делает в течение одной минуты.
Подавляющее большинство людей, которые видят значение в 100 или же в 200 л.с. считают, что это хорошо. И, по большому счету, это действительно так. 100 л.с. или же лошадиных сил являются очень хорошими показателями для городских кроссоверов, которые отличаются компактными размерами, или же для мощных хэтчбеков.
Однако такие характеристики как крутящий момент, число оборотов, которые мотор делает в течение одной минуты, являются не менее важными характеристиками мотора. Потому как уровень мощности в 200 л.с. может быть достигнут, только когда мотор автотранспортного средства работает на пределе. От крутящего момента и будет зависеть быстрота разгона транспортного средства.
Допустим, что вы едете на своей машине по автомобильной трассе на большой скорости, включив четвертую или же пятую передачу. Если вдруг дорога станет подниматься, то уровень мощности мотора вашего транспортного средства может просто оказаться недостаточно.
По этой причине вам придется переходить на низкие передачи, уровень мощности мотора, соответственно, от этого будет увеличиваться. Крутящий же момент обеспечивает увеличение уровня мощности мотора автотранспортного средства, помогая активизировать все его силы на то, чтобы преодолеть препятствие.
Самым большим крутящим моментом на текущий момент времени обладают двигатели, которые работают на бензине. У них он составляет от трех с половиной тысяч оборотов в течение одной минуты, до шести тысяч оборотов в течение одной минуты.
Это будет зависеть главным образом от конкретной марки транспортного средства. Что касается двигателей дизельного типа, то у них максимальный крутящий момент в подавляющем большинстве случаев наблюдается на трех-четырех тысячах оборотов в течение одной минуты.
Соответственно, у них гораздо лучше динамика разгона. Тем не менее, в плане максимального уровня мощности они очень сильного проигрывают двигателям, которые работают на бензине.
Ну и для того, чтобы читателям было совсем понятно, что представляет собой крутящий момент, расскажем о единицах, в которых он измеряется. Это метры и ньютоны. Это та сила, с которой мощность поступает от поршня на маховик через коленвал. И уже от него на трансмиссию (коробку передач). От скорости движения поршня будет непосредственным образом зависеть скорость движения маховика.
Исходя из всего вышеизложенного, можно сделать вывод, что крутящий момент машины образуется мощностью мотора.
Хотя существуют и такие автотранспортные средства, мотор которых вырабатывает тягу даже при низких оборотах. К таким в частности, можно отнести различного рода трактора, самосвалы, а также внедорожники.
Почему крутящий момент важен?
Крутящий момент, в особенности при разработке систем с двигателями, которые обеспечивают правильную величину крутящего момента, невероятно важен в широком диапазоне различных применений.
Допустим, вы строите робота. Если вы хотите построить более крупного робота или робота, способного поднимать тяжелые предметы, вам понадобятся более мощные двигатели, способные создавать больший крутящий момент, чтобы заставить робота двигаться.
Для летательных аппаратов крутящий момент, создаваемый двигателями, напрямую определяет максимальную подъемную силу, которую могут создавать пропеллеры.
Рисунок 3 – Создание подъемной силы крутящим моментом.
Если вы строите автомобиль и хотите, чтобы он ускорялся быстрее, вам потребуется от двигателей больший крутящий момент – в автомобиле сила, движущая его вперед, равна (примерно) крутящему моменту двигателя, деленному на радиус колес.
Электромобили, такие как Tesla Model S, известны своим быстрым ускорением, потому что их электродвигатели генерируют огромную величину крутящего момента. Этот крутящий момент непосредственно передается в большую силу, применяемую колесами к поверхности дороги. Как учат основы физики, воздействие на объект большей силы заставит его ускоряться быстрее.
Что такое крутящий момент двигателя
Несколько по-иному обстоит ситуация с пониманием крутящего момента, но, зная основные законы физики и базовое устройство силового агрегата, можно без труда прояснить это понятие. Крутящий момент двигателя – это качественный показатель, характеризующий силу вращения коленчатого вала. Этот параметр рассчитывается как произведение силы, приложенной к поршню, на плечо (расстояние от центральной оси вращения коленчатого вала до места крепления поршня (шатунной шейки)). Крутящий момент измеряется в ньютонах на метр (Нм).
Крутящий момент на коленчатом валу, как следует из вышеприведенной формулы, зависит от силы давления газов на поршень, а также от рабочего объема двигателя и степени сжатия топливной смеси в цилиндрах. Кстати сказать, значительно более высокий крутящий момент дизельных двигателей, по сравнению с аналогичными по объему бензиновыми моторами, объясняется чрезвычайно высокой степенью сжатия смеси дизельного топлива и воздуха в камерах сгорания (бензиновые — примерно 10:1, дизельные – около 20:1).
Высокий крутящий момент двигателя обеспечивает автомобилю отличную динамику разгона уже при низких оборотах вращения коленчатого вала, существенно увеличивает тяговые характеристики силового агрегата – повышает грузоподъемность авто и его проходимость.
Максимальное значение крутящего момента двигатель внутреннего сгорания достигает при определенных оборотах. У бензиновых моторов этот показатель более высокий, чем у «дизелей».
Как рассчитать
Чтобы узнать тяговое усилие у конкретного автомобиля, нужно иметь данные о мощности и оборотах коленчатого вала. Для измерения следует брать пиковую мощность и обороты. Максимальный крутящий момент двигателярассчитывается по следующей формуле:
M = P х 9550/N
Где Р – мощность ДВС, измеряемая в кВт;
N – число оборотов двигателя автомобиля в минуту;
9550 – постоянный коэффициент в формуле.
Мощность или крутящий момент — что важнее?
Если провести сравнительную оценку двух рабочих характеристик двигателя – мощности и крутящего момента, то очевидными становятся следующие факты:
- крутящий момент на коленчатом валу – основной параметр, характеризующий работу силового агрегата;
- мощность двигателя – это вторичная рабочая характеристика мотора, которая, по своей сути, является производной крутящего момента;
- зависимость мощности от крутящего момента выражается отношением: Р = М*n, где Р – мощность, М – крутящий момент, n – количество оборотов коленчатого вала в минуту;
- мощность двигателя линейно зависима от частоты вращения коленчатого вала: чем выше обороты, тем больше мощность мотора (естественно, до определенных пределов);
- крутящий момент также увеличивается при повышении оборотов двигателя, но достигнув своего максимального значения (при определенной частоте вращения коленчатого вала), его показатели снижаются, независимо от дальнейшего увеличения оборотов (график зависимости крутящего момента от частоты вращения двигателя имеет вид перевернутой параболы).
Крутящий момент дизельного двигателя
Особенностью дизельных двигателей сравнительно с бензиновыми аналогами является более высокий крутящий момент и меньшая мощность. Дело в том, что дизельные моторы имеют суженный диапазон оборотов. Это связано с конструктивными отличиями таких моторов (ход поршня), а также более высокой степенью сжатия и спецификой процесса сгорания дизтоплива.
Другими словами, дизель изначально не приспособлен для работы на высоких оборотах. Следовательно, агрегат не так хорошо раскручивается. Параллельно с этим температура выхлопа у дизельного двигателя ниже по сравнению с бензиновым, а также на «низах» моторы на солярке не так склонны к детонации. В результате конструкторы смогли установить сложные и максимально эффективные системы турбонаддува именно на дизель.
Благодаря таким особенностям крутящий момент дизельного двигателя на низких оборотах намного выше аналогичных атмосферных или тубированных бензиновых ДВС. Поднимать мощность такого агрегата не имеет смысла, так как уверенная тяга на низах, высокий КПД и топливная экономичность полностью перекрывают небольшое отставание дизелей по показателю мощности и максимальной скорости.
Добавим, что потенциал дизеля позволяет сделать его даже мощнее бензиновых собратьев, но это приведет к существенному удорожанию и утяжелению всей конструкции двигателя. Также понадобится доработка системы питания дизельного мотора и установка более выносливой КПП, которая будет способна выдерживать просто огромный крутящий момент. Не следует забывать и об экологических нормах, для соответствия которым мощные дизели потребуют серьезной модернизации. Получается, поднимать мощность дизеля сегодня попросту нецелесообразно.
От чего зависит крутящий момент ДВС
Чтобы легче разобраться в этом вопросе, посмотрим на график внешней скоростной характеристики (ВСХ) одного из двигателей Jeep Grand Cherokee.
График ВСХ двигателя Jeep
График ВСХ двигателя Jeep Grand Cherokee
На картинке видно, что величина момента меняется при увеличении скорости оборотов ДВС. После частоты 3500 об/мин показатель резко падает. Почему так происходит? Суть в наполнении цилиндров горючей смесью. Объем новой смеси не всегда равен объему камеры сгорания. Данная характеристика называется коэффициентом наполнения цилиндров. Величина может быть выше или ниже 1.
Изменение коэффициента происходит ввиду строения впускного коллектора и настройки фаз газораспределения. В нашем примере впускные клапаны ДВС открываются на 10° до верхней мертвой точки и закрываются на 60° после прохождения нижней мертвой точки. Это сделано, чтобы сбалансировать «полку» момента и получить оптимальные значения для средних оборотов (частота вращения 2500-3500 в минуту), которые нам и нужны для повседневной эксплуатации.
Что происходит с нашим мотором, когда он работает на малых оборотах? В теории при уменьшении скорости поршня должна улучшится наполняемость цилиндра. На практике при частоте вращения 1600 об/мин значение тягового усилия падает до 260 Ньютон-метров. Причина тому – слишком позднее закрытие клапана и малая степень сжатия (7.4/1 вместо 9/1). Как итог – меньшее давление газов в конце такта сгорания, и соответственно, малый крутящий момент двигателя.
На что влияет крутящий момент двигателя
Если производить аналогию с человеческим организмом, то можно условно определить, что крутящий момент — это аналог силы, а мощность — это аналог выносливости. Именно от мощности двигателя внутреннего сгорания в конечном итоге зависит то, какую максимальную скорость может развить автомобиль, а от крутящего момента — то, как быстро сможет он это сделать. Именно поэтому далеко не все мощные автомобили имеют хорошую динамику разгона, и далеко не все, у которых она находится на высоком уровне, располагают очень мощными моторами.
Опытные автомобилисты отлично знают, что лучше всего выбирать для себя автомобиль с таким двигателем, показатель крутящего момента которого при работе на тех оборотах, на которых он обычно функционирует, является наилучшим. Дело в том, что это позволяет им использовать потенциал мощности ДВС в максимальной степени.
Следует заметить, что производители двигателей внутреннего сгорания всячески стремятся увеличить их крутящие моменты, причем во всем диапазоне работы моторов. Чаще всего пытаются достичь этого (и, кстати говоря, достаточно успешно) с помощью турбонаддува, управляемых фаз газораспределения (это оптимизирует процесс сгорания топливной смеси), повышения степени сжатия, использованием особых конструкций впускного коллектора и целым рядом других способов.
Как зависит мощность от крутящего момента
Давайте взглянем на график работы ДВС Saab 9-3. Как видно, кривая мощности круто возрастает на пике момента и слабо поднимается, когда он падает.
График ВСХ
График ВСХ автомобиля Saab
Таким образом, мощность определяет объем работы, который мотор может выполнить за единицу времени. Величина мощности на определенных оборотах зависит только от тягового усилия на этих же значениях. И чтобы увеличить максимальную мощность, нужно поднять момент на больших оборотах.
Какому двигателю отдать предпочтение
Сегодня множество моделей производители оснащают разными типами моторов: бензиновым или дизельным. Эти модели идентичны только по цене и другим характеристикам.
Из-за разных типов мотора одна и та же модель может отличаться по показателям мощности мотора и крутящему моменту, при этом разница может быть значительной.
Бензиновый двигатель
Бензиновый двигатель формирует воздушно-топливную смесь, заполняющую цилиндр. Температура внутри него поднимается до примерно 500 градусов. У таких моторов номинальный коэффициент сжатия составляет порядка 9-10, реже 11 единиц. Поэтому, когда происходит впрыск необходимо использование свечей зажигания.
Дизельный двигатель
В цилиндрах работающего на дизеле движка коэффициент сжатия смеси может достигать показателя в 25 единиц, температура – 900 градусов. Поэтому смесь зажигается без использования свечи.
Улучшение разгона авто за счет изменения момента вращения
Автопроизводители, с целью улучшения динамических показателей, устанавливают на авто моторы, имеющие максимальный Мкр. Дизельные, а также турбированные и много цилиндровые моторы характеризуются повышенным моментом вращения.
Степень влияния мощности и момента на динамику автомобиля:
- Машины, имеющие более мощный мотор, но с недостаточным Мкр, уступают аналогам, с лучшим разгоном.
- При наличии высокого Мкр, автомобиль ускоряется намного уверенней на пониженных оборотах.
- Максимальная скорость автомобиля всецело диктуется мощностью движка и не зависит от величины Мкр.
Важно: Чтобы сравнивать разгонные характеристики двигателей, при схожих трансмиссиях, необходимо удостовериться в идентичности конструкций силовых агрегатов, типа коробок передач, передаточных чисел. Иначе сравнение не будет считаться корректным.
Отличия бензиновых моторов от дизелей по моменту
Бензиновые двигатели не отличаются высоким Мкр. Максимальный Мкр достигается в узких границах при 3 – 4 тыс. оборотах. Резкое увеличение мощности происходит при 7 – 8 тысячах об/мин.
Дизели не развивают высоких оборотов. Их максимальное значение не превышает 3 – 5 000 об/мин. Однако, дизельные двигатели развивают высокий Мкр, превышающий по значению бензиновые в несколько раз, даже на холостом ходу.
Что такое максимальный крутящий момент двигателя?
На представленном графике можно наблюдать две рабочие характеристики двигателя внутреннего сгорания: мощность и момент кручения в сравнении.
Первичным показателем является крутящий момент, развиваемый коленчатым валом. Именно от значения Мкр зависит вторичный рабочий параметр – мощность силового агрегата. Из графика становится понятно, что мощность возрастает на фоне максимального значения момента вращения при росте количества оборотов коленвала.
Момент вращения тоже увеличивается с ростом оборотов, но не до бесконечности. После достижения максимального значения этот параметр остается постоянным при определенных оборотах. Если же скорость вращения коленчатого вала постоянно наращивать, парабола графика момента резко идет на снижение. Это обусловлено механическими потерями в двигателе на преодоление силы трения между кольцами поршней и боковыми стенками рабочих цилиндров. Коэффициент полезного действия силового агрегата резко снижается, энергия начинает уходить на преодоление возрастающих нагрузок.
Производители автомобилей предпочитают устанавливать двигатели, у которых кривая графика максимального крутящего момента находится в наибольшем диапазоне оборотов коленчатого вала. То есть, когда отрезок верхней горизонтальной линии (полка крутящего момента), имеет наибольшую длину.
Что интересует разных водителей
Каждый, кто оказывается за рулём, со временем начинает желать, чтобы автомобиль резво реагировал на нажатие педали акселератора в любой ситуации, не требуя дополнительных действий. Но возможности моторов ограничены, для хорошей отдачи им надо развить достаточное количество оборотов, как принято называть частоту вращения коленчатого вала. Только так можно зарядить цилиндры нужным количеством рабочей смеси.
Для раскрутки моторов на любой скорости существует трансмиссия. Находящаяся в её составе коробка передач может менять своё передаточное число, вручную или автоматически, позволяя двигателю работать на больших оборотах, а значит и со значительным моментом, даже на малых скоростях, например, при подъёме гружёного автомобиля в гору. Происходит это потому, что крутящий момент водителю нужен не на валу двигателя, а на ведущих колёсах.
Законы техники утверждают, что при повышении передаточного числа скорость падает, а КМ увеличивается. Причём пропорционально, фактически он умножается на величину общего передаточного числа от двигателя к колёсам. И уже именно там он ощущается водителем как сила, толкающая машину вперёд
Что такое рычаг силы?
Рычаг силы играет важную роль при определении величины момента силы. Чтобы понять, о чем идет речь, рассмотрим следующий рисунок.
Здесь показан некоторый стержень длиною L, который закреплен в точке вращения одним из своих концов. На другой конец действует сила F, направленная под острым углом φ. Согласно определению момента силы, можно записать:
M = F*L*sin(180o-φ).
Угол (180o-φ) появился потому, что вектор L¯ направлен от закрепленного конца к свободному. Учитывая периодичность тригонометрической функции синуса, можно переписать это равенство в таком виде:
M = F*L*sin(φ).
Теперь обратим внимание на прямоугольный треугольник, построенный на сторонах L, d и F. По определению функции синуса, произведение гипотенузы L на синус угла φ дает значение катета d. Тогда приходим к равенству:
M = F*d.
Линейная величина d называется рычагом силы. Он равен расстоянию от вектора силы F¯ до оси вращения. Как видно из формулы, понятием рычага силы удобно пользоваться при вычислении момента M. Полученная формула говорит о том, что вращающий момент максимальный для некоторой силы F будет возникать только тогда, когда длина радиус-вектора r¯ (L¯ на рисунке выше) будет равна рычагу силы, то есть r¯ и F¯ будут взаимно перпендикулярны.
Направление действия величины M¯
Выше было показано, что вращающий момент - это векторная характеристика для данной системы. Куда направлен этот вектор? Ответить на этот вопрос не представляет особого труда, если вспомнить, что результатом произведения двух векторов является третий вектор, который лежит на оси, перпендикулярной плоскости расположения исходных векторов.
Остается решить, будет ли направлен момент силы вверх или вниз (на читателя или от него) относительно упомянутой плоскости. Определить это можно или по правилу буравчика, или с помощью правила правой руки. Приведем оба правила:
- Правило правой руки. Если расположить правую кисть таким образом, чтобы четыре ее пальца двигались от начала вектора r¯ к его концу, а затем от начала вектора F¯ к его концу, то большой палец, оттопыренный, укажет на направление момента M¯.
- Правило буравчика. Если направление вращения воображаемого буравчика совпадает с направлением вращательного движения системы, то поступательное движение буравчика укажет на направление вектора M¯. Напомним, что он вращается только по часовой стрелке.
Оба правила являются равноправными, поэтому каждый может использовать то, которое является для него более удобным.
При решении практических задач разное направление вращающего момента (вверх - вниз, влево - вправо) учитывается с помощью знаков "+" или "-". Следует запомнить, что за положительное направление момента M¯ принято считать такое, которое приводит к вращению системы против часовой стрелки. Соответственно, если некоторая сила приводит к вращению системы по ходу стрелки часов, то создаваемый ее момент будет иметь отрицательную величину.
Физический смысл величины M¯
В физике и механике вращения величина M¯ определяет способность силы или суммы сил совершать вращение. Поскольку в математическом определении величины M¯ стоит не только сила, но и радиус-вектор ее приложения, то именно последний во многом определяет отмеченную вращательную способность. Чтобы понятнее было, о какой способности идет речь, приведем несколько примеров:
- Каждый человек, хотя бы один раз в жизни пытался открыть дверь, взявшись не за ручку, а толкнув ее недалеко от петель. В последнем случае приходится прилагать значительное усилие, чтобы добиться желаемого результата.
- Чтобы открутить гайку с болта, используют специальные гаечные ключи. Чем длиннее ключ, тем легче открутить гайку.
- Чтобы ощутить важность рычага силы, предлагаем читателям проделать следующий эксперимент: взять стул и попытаться удержать его одной рукой на весу, в одном случае руку прислонить к телу, в другом - выполнить задачу на прямой руке. Последнее для многих окажется непосильной задачей, хотя вес стула остался тем же самым.
Единицы измерения момента силы
Несколько слов также следует сказать о том, в каких единицах в СИ измеряется вращающий момент. Согласно записанной для него формуле, он измеряется в ньютонах на метр (Н*м). Однако в этих единицах также измеряется работа и энергия в физике (1 Н*м = 1 джоуль). Джоуль для момента M¯ не применяется, поскольку работа является скалярной величиной, M¯ же - это вектор.
Тем не менее совпадение единиц момента силы с единицами энергии не является случайным. Работа по вращению системы, совершенная моментом M, рассчитывается по формуле:
A = M*θ.
Откуда получаем, что M также может быть выражен в джоулях на радиан (Дж/рад).
Используем векторы для изучения вращательного движения
В предыдущих разделах этой главы угловая скорость и угловое ускорение рассматривались как скаляры, т.е. как параметры, характеризующиеся только величиной. Однако эти параметры вращательного движения, на самом деле, являются векторами, т.е. они обладают величиной и направлением (см. главу 4). В этом разделе рассматривается величина и направление некоторых параметров вращательного движения.
Определяем направление угловой скорости
Как нам уже известно, вращающееся колесо мотоцикла имеет не только угловую скорость, но и угловое ускорение. Что можно сказать о направлении вектора угловой скорости? Оно не совпадает с направлением линейной тангенциальной скорости, а… перпендикулярно плоскости колеса!
Эта новость всегда приводит к некоторому замешательству среди новичков: угловая скорость ( omega ), оказывается, направлена вдоль оси вращающегося колеса (рис. 10.2). Во вращающемся колесе единственной неподвижной точкой является его центр. Поэтому начало вектора угловой скорости принято располагать в центре окружности вращения.
Для определения направления вектора угловой скорости ( omega ) часто используют правило правой руки. Если охватить ладонью ось вращения, а пальцы свернуть так, чтобы они указывали на направление тангенциальной скорости, то вытянутый большой палец укажет направление вектора угловой скорости ( omega ).
Теперь угловую скорость можно использовать так же, как и остальные векторные характеристики движения. Направление вектора угловой скорости можно найти по правилу правой руки, а величину — по приведенной ранее формуле. То, что вектор угловой скорости направлен перпендикулярно плоскости вращательного движения, часто вызывает некоторые трудности у начинающих, но к этому можно быстро привыкнуть.
Определяем направление углового ускорения
Если вектор угловой скорости направлен перпендикулярно плоскости вращательного движения, то куда направлен вектор углового ускорения в случае замедления или ускорения вращения объекта? Как известно (см. предыдущие разделы), угловое ускорение определяется формулой:
где ( alpha ) — угловое ускорение, ( Deltaomega ) — изменение угловой скорости, ( Delta t )— время изменения угловой скорости.
В векторной форме оно имеет следующий вид:
где ( mathbf{alpha} ) — вектор углового ускорения, а ( Deltamathbf{omega} ) — изменение вектора угловой скорости. Отсюда ясно, что направление вектора углового ускорения совпадает с направлением изменения вектора угловой скорости.
Если вектор угловой скорости меняется только по величине, то направление вектора углового ускорения параллельно направлению вектора угловой скорости. Если величина угловой скорости растет, то направление вектора углового ускорения совпадает с направлением вектора угловой скорости, как показано на рис. 10.3.
А если величина угловой скорости падает, то направление вектора углового ускорения противоположно направлению вектора угловой скорости, как показано на рис. 10.4.
Поднимаем грузы: момент силы
В физике большое значение имеет не только время, но и место приложения силы. Всем когда-либо приходилось пользоваться рычагом для перемещения тяжелых грузов. Чем длиннее рычаг, тем легче сдвинуть груз. На языке физики применение силы с помощью рычага характеризуется понятием момент силы.
Приложение момента силы неразрывно связано с вращательным движением объектов. Если приложить силу к краю карусели, то карусель начнет вращательное движение. Чем дальше точка приложения силы, тем легче раскрутить карусель до заданной угловой скорости (параметры вращательного движения описываются в главе 1 1 ).
В верхней части рис. 10.5 показаны весы-качели с грузом массы ( m_1 ) на одном конце и грузом большей массы ( m_2=2m_1 ) посередине. Чтобы уравновесить весы-качели, нужно сместить груз с большей массой ( m_2 ) к другому концу весов, как показано в нижней части рис. 10.5. Как известно из опыта, размещение груза в точке вращения весов не приводит к уравновешиванию весов. Чтобы уравновесить весы, нужно сдвинуть груз с большей массой ( m_2=2m_1 ) к другому концу весов на расстояние вдвое меньшее, чем расстояние от точки вращения до второго груза с массой ( m_1 ).
Знакомимся с формулой момента силы
Для уравновешивания весов важно не только, какая сила используется, но и где она прикладывается. Расстояние от точки приложения силы до точки вращения называется плечом силы.
Предположим, что нам нужно открыть дверь, схематически показанную на рис. 10.6. Как известно из опыта, дверь практически невозможно открыть, если прилагать силу вблизи петель (см. схему А на рис. 10.6). Однако, если приложить силу посередине двери, то открыть ее будет гораздо проще (см. схему Б на рис. 10.6). Наконец, прилагая силу у противоположного края двери по отношению к расположению петель, ее можно открыть с еще меньшим усилием (см. схему В на рис. 10.6).
На рис. 10.6 расстояние от мест расположения петель до точки приложения силы и есть плечо силы. Моментом силы называется произведение прилагаемой силы ( F ) на плечо силы ( l ):
Момент силы в системе СИ измеряется в Н·м, а в системе СГС — в дин·см (подробнее эти системы единиц измерения описываются в главе 2).
Вернемся к примеру на рис. 10.6, где требуется открыть дверь шириной 1 м с помощью силы величиной 200 Н. В случае А (см. рис. 10.6) плечо силы равно нулю и произведение этого плеча на силу любой величины (включая и силу 200 Н) даст нулевой момент силы. В случае Б (см. рис. 10.6) плечо силы равно половине ширины двери, т.е. плечо силы ( l ) равно 0,5 м и момент силы будет равен:
В случае В (см. рис. 10.6) плечо силы равно ширине двери, т.е. плечо силы ( l ) равно 1 м и момент силы будет равен:
Итак, увеличение вдвое длины плеча при той же силе дает нам такое же увеличение момента силы. До сих пор сила прилагалась перпендикулярно к линии, соединяющей точку приложения силы и точку вращения. А что будет с моментом силы, если дверь будет немного приоткрыта и направление силы уже будет не перпендикулярным?
Разбираемся с направлением приложенной силы и плечом силы
Допустим, что сила приложена не перпендикулярно к поверхности двери, а параллельно, как показано на схеме А на рис. 10.7. Как известно из опыта, таким образом дверь открыть невозможно. Дело в том, что у такой силы нет проекции, которая бы могла вызвать вращательное движение. Точнее говоря, у такой силы нет ненулевого плеча для создания вращательного момента силы.
Размышляем над тем, как создается момент силы
Момент силы из предыдущего примера требуется создавать всегда для открытия двери независимо от того, какую дверь приходится открывать: легкую калитку изгороди или массивную дверь банковского сейфа. Как вычислить необходимый момент силы? Сначала нужно определить плечо сил, а потом умножить его на величину силы.
Однако не всегда все так просто. Посмотрите на схему Б на рис. 10.7. Как видите, сила прилагается под некоторым углом ( theta ). Как в таком случае определить плечо силы? Если бы угол ( theta ) был прямым, то мы могли бы воспользоваться уже известно нам формулой:
Однако в данном случае угол ( theta ) не является прямым.
В таком случае нужно просто помнить следующее правило: плечом силы называется длина перпендикуляра, опущенного из предполагаемой точки вращения на прямую, относительно которой действует сила.
Попробуем применить это правило определения плеча силы для схемы Б на рис. 10.7. Нужно продлить линию, вдоль которой действует сила, а потом опустить на нее перпендикуляр из точки вращения двери. Из полученного прямоугольного треугольника легко определить искомое плечо силы:
Если угол ( theta ) равен нулю, то никакого момента силы не возникает (см. схему А на рис. 10.7).
Итак, получаем для момента силы для схемы Б на рис. 10.7:
Например, если требуется открыть дверь шириной 1 м с помощью силы величиной 200 Н, приложенной под углом ( theta ) = 45°, то создаваемый момент этой силы будет равен:
Как видите, этот момент силы 140 Н·м меньше, чем момент силы 200 Н·м, созданный под прямым углом на схеме В на рис. 10.6.
Определяем направление момента силы
Учитывая все приведенные выше сведения о моменте силы, у читателя вполне может возникнуть подозрение, что момент силы обладает направлением. И это действительно так. Момент силы является векторной величиной, направление которой определяется по правилу правой руки. Если охватить ладонью ось вращения, а пальцы свернуть так, чтобы они указывали на направление силы, то вытянутый большой палец укажет направление вектора момента силы.
На рис. 10.8 показан пример силы ( mathbf{F} ) с плечом ( mathbf{l} ) и соответствующего вектора момента сил ( mathbf{M} ).
Мощность двигателя
Расчет мощности двигателя автомобиля
5 популярных способа как вычислить мощность двигателя автомобиля используя такие данные как: — обороты двигателя, — объем мотора, — крутящий момент, — эффективное давление в камере сгорания, — расход топлива, — производительность форсунок, — вес машины — время разгона до 100 км.
Каждая из формул, по которой будет производиться расчет мощности двигателя автомобиля довольно относительная и не может со 100% точностью определить реальную лошадиную силу движущую машину. Но произведя подсчеты каждым из приведенных гаражных вариантов, опираясь не те или иные показатели, можно рассчитать, по крайней мене, среднее значение будь-то стоковый или тюнингованный движок, буквально с 10-ти процентной погрешностью.Мощность — энергия, вырабатываемая двигателем, она преобразуется в крутящий момент на выходном валу ДВС. Это не постоянная величина. Рядом со значениями максимальной мощности всегда указываются обороты, при которых можно её достигнуть. Точкой максимума достигается при наибольшем среднее эффективном давлении в цилиндре (зависит от качества наполнения свежей топливной смесью, полноты сгорания и тепловых потерь). Наибольшую мощность современные моторы выдают в среднем при 5500–6500 об/мин. В автомобильной сфере измерять мощность двигателя принято в лошадиных силах. Поэтому поскольку большинство результатов выводятся в киловаттах вам понадобится калькулятор перевода кВт в л.с
Как рассчитать мощность через крутящий момент
Самый простой расчет мощности двигателя авто можно определить по зависимости крутящего момента и оборотов. —Крутящий момент Сила, умноженная на плечо ее приложения, которую может выдать двигатель для преодоления тех или иных сопротивлений движению. Определяет быстроту достижения мотором максимальной мощности. Расчетная формула крутящего момента от объема двигателя: Мкр = VHхPE/0,12566, где VH – рабочий объем двигателя (л), PE – среднее эффективное давление в камере сгорания (бар). —Обороты двигателя — Скорость вращения коленчатого вала. Формула для расчета мощности двигателя внутреннего сгорания автомобиля имеет следующий вид: P = Mкр * n/9549 [кВт], где: Mкр – крутящий момент двигателя (Нм), n – обороты коленчатого вала (об./мин.), 9549 – коэффициент, дабы обороты подставлять именно в об/мин, а не косинусами альфа. Поскольку по формуле, результат получим у кВт, то при надобности также можно конвертировать в лошадиные силы или попросту умножать на коэффициент 1,36. Использование данных формул — это самый простой способ перевести крутящий момент в мощность. А дабы не вдаваться во все эти подробности быстрый расчет мощности ДВС онлайн, можно произвести, используя наш калькулятор. Но, к сожалению, данная формула отражает лишь эффективную мощность мотора которая не вся доходит именно до колес автомобиля. Ведь идут потери в трансмиссии, раздаточной коробке, на паразитные потребители (кондиционер, генератор, ГУР и т.п.) и это без учета таких сил как сопротивление качению, сопротивление подъему, аэродинамическое сопротивление.
Как рассчитать мощность по объему двигателя
Если же вы не знаете крутящий момент двигателя своего автомобиля, то для определения его мощности в киловаттах также можно воспользоваться формулой такого вида: Ne = Vh * pe * n/120 (кВт), где: Vh — объём двигателя, см³ n — частота вращения, об/мин pe — среднее эффективное давление, МПа (на обычных бензиновых моторах оставляет порядка 0,82 — 0,85 МПа, форсированных — 0,9 МПа, а для дизеля от 0,9 и до 2,5 МПа соответственно). Для получения мощности движка в «лошадках», а не киловаттах, результат следует разделить на 0,735.
Расчет мощности двигателя по расходу воздуха
Такой же приблизительный расчет мощности двигателя можно определять и по расходу воздуха. Функция такого расчета доступна тем, у кого установлен бортовой компьютер, поскольку нужно зафиксировать значение расхода, когда двигатель автомобиля, на третьей передаче, раскручен до 5,5 тыс. оборотов. Полученное значение с ДМРВ делим на 3 и получаем результат. Формула как рассчитать мощность ДВС по расходу воздуха в итоге выглядит так: Gв [кг]/3=P[л.с.] Такой расчет, как и предыдущий, показывает мощность брутто (стендовое испытание двигателя без учета потерь), которая выше на 10—20% от фактической. А еще стоит учесть, что показания датчика ДМРВ сильно зависят от его загрязненности и калибровок.
Расчет мощности по массе и времени разгона до сотни
Еще один интересный способ как рассчитать мощность двигателя на любом виде топлива, будь-то бензин, дизель или газ – по динамике разгона. Для этого используя вес автомобиля (включая пилота) и время разгона до 100 км. А чтобы Формула подсчета мощности была максимально приближена к истине нужно учесть также потери на пробуксовку в зависимости от типа привода и быстроту реакции разных коробок передач. Приблизительные потери при старте для переднеприводных составит 0,5 сек. и 0,3-0,4 у заднеприводных авто. Используя этот калькулятор мощности ДВС, который поможет определить мощность двигателя исходя из динамики разгона и массы, вы сможете быстро и достаточно точно узнать мощь своего железного коня не вникая в технические характеристики.
Подведем итоги
Если вы столкнулись с возможностью выбрать автомобиль с незначительно отличающимися по характеристикам двигателями, тогда оптимально выбирать агрегат с большим крутящим моментом. Данное правило особенно актуально для машин с МКПП. Например, производитель может выпускать одну и ту же модель, которая получает ДВС с рабочим объемом 1.8 литра (140 л.с.) и 2.0 (155 л.с.). Также следует учитывать и упомянутую выше полку крутящего момента, то есть зависимость мощности и крутящего момента от оборотов двигателя.
Лучшим вариантом двигателя будет тот, когда мотор выходит на пик момента не на определенных оборотах, а в максимально широком диапазоне. Например, простой атмосферный двигатель может иметь пик крутящего момента на 3500 об/мин, в то время как его продвинутый высокотехнологичный аналог с турбиной выходит на пик момента уже при 1500 об/мин, сохраняя «ровную» полку до 4500 об/мин. Это значит, что в первом случае для уверенного разгона мотор нужно крутить, удерживать ДВС на оборотах максимального момента, а также чаще переключать передачи вниз при возникновении нагрузок. Во втором случае максимум крутящего момента будет доступен водителю в широком диапазоне оборотов, что позволяет эффективно ускоряться и справляться с меняющимися нагрузками без частого переключения передачи на пониженную. Другими словами, доступность высокого крутящего момента в расширенном диапазоне фактически означает, что и мощности почти всегда достаточно.
Указанные особенности разных ДВС и умение справляться с нагрузками определяют следующий показатель, который известен как эластичность двигателя. Под эластичностью мотора следует понимать способность агрегата набирать обороты и разгонять автомобиль в условиях растущей нагрузки без переключения передачи на пониженную.
Различные силовые установки тестируются на эластичность путем анализа тяги и разгона с 60 до 100 км/ч при движении на четвёртой передаче или ускорения с 80 до 120 км/ч на включенной пятой передаче. По этой причине малообъемный высокофорсированный двигатель, который имеет отличный подхват на низких оборотах и широкую полку момента, покажет себя отличным вариантом для города. Именно в городском цикле, то есть в условиях умеренных скоростей и режимов ускорение-замедление, потенциала такого ДВС более чем достаточно. При этом следует учитывать, что на более высокой скорости в режиме трассы подобный агрегат может не обеспечить уверенного обгона, уступив в этом плане простому атмосферному двигателю с большим крутящим моментом и мощностью.
- https://bigjournal.ru/chto-takoe-krutyashhij-moment-dvigatelya-avtomobilya-prostymi-slovami/
- https://radioprog.ru/post/685
- https://avtonam.ru/useful/krutyashhij-moment-dvigatelya/
- https://mashinapro.ru/1893-krutyaschiy-moment-dvigatelya.html
- http://KrutiMotor.ru/krutyashhij-moment-dvigatelya/
- https://AvtoNov.com/%D0%BA%D1%80%D1%83%D1%82%D1%8F%D1%89%D0%B8%D0%B9-%D0%BC%D0%BE%D0%BC%D0%B5%D0%BD%D1%82-%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8F-%D1%87%D1%82%D0%BE-%D1%8D%D1%82%D0%BE/
- https://dongfeng-auto.ru/to/krutyashchij-moment-edinicy-izmereniya.html
- https://motoran.ru/dvigatel/krutyashhij-moment
- https://automonth.ru/krutjashhij-moment-dvigatelja/
- https://autobibikka.ru/krutyashhij-moment-dvigatelya/
- https://FB.ru/article/450796/vraschayuschiy-moment-vraschayuschiy-moment-formula-moment-silyi-opredelenie
- https://fizi4ka.ru/fizika-s-formulami/glava-10-vrashhaem-obekty-moment-sily.html
- https://sto-tolyatti.ru/sovety/formula-krutyashchego-momenta.html